How do I know who my advisor is? Can I change my advisor?

​For M.S. students, your advisor when you are admitted to KAUST is the Program Chair. For Ph.D. students, your advisor is your PI (supervisor) whose lab you have been accepted in to. 

Yes, you can change your advisor. M.S. students are advised to do so if/when they begin their thesis or directed research.  Ph.D. students do have the ability to change advisors, but the overall impact to the Ph.D. project, as well as the time left to finish the Ph.D., could be significant.  This will have to be taken into account before approval.

​M.S. students need 36 credits (combination of courses and research is specific to your program). 

Ph.D. students need 6 credits of 300-level coursework and will earn dissertation research credit each semester until they defend (no minimum credits established, although there is a minimum residency requirement of 2.5 years).

​During your final M.S. semester at KAUST, you will be eligible to submit a “rollover” application.  You will be contacted by the Admissions Office for this.  You must have a confirmed supervisor in order for the application to be approved.

​M.S. students get all university holidays (Eid Al-Fitr, Eid Al-Adha, Spring break).  

Ph.D. students get university holidays and three weeks of annual/vacation leave per calendar year to be taken in agreement with your PI.

​Mandatory, core and elective courses are listed in the program guide. The program guides for all BESE programs can be found here 
​“Time Extension to Complete M.S. Thesis” application request can be submitted by the 9th week of your final Fall semester.  See application for required approvals here .
​No.  Only once during your time here at KAUST.  If “WE Courses” appears on your KAUST transcript, that means you have met this requirement.​
​Yes, both M.S. and Ph.D. in all BESE programs must register, attend, and receive an S grade for the graduate seminar each semester (Spring and Fall, NOT summer).

​Yes. Drop and Add deadlines are on the academic calendar.

​Your GPC can help you request these from the Registrar’s Office, or you can contact them directly at  RegistrarHelpDesk@KAUST.EDU.SA​​ 

Latest Events

A Sharp View of Biofouling In Membrane-Based Seawater Desalination Using Optical Coherence Tomography

Reverse osmosis and nanofiltration spiral wound membrane elements for water purification are increasingly important to produce clean water because of the rising global freshwater scarcity. The operational performance (feed channel pressure drop, transmembrane pressure, and solute passage) of membrane elements is hindered by biofouling on the membrane and feed spacer.
Biofouling is the result of excessive biofilm growth, typically starting at the feed spacer in spiral wound elements. Understanding the role of the feed spacer in biofouling is pivotal to developing effective mitigation strategies. Nevertheless, the number of studies investigating biofouling on the feed spacer is relatively small. The objective of this dissertation was to develop and apply research tools to investigate the impacts of biofouling on the operational performance of spiral wound elements.
The first chapter of this dissertation identified optical coherence tomography (OCT) as a state-of-the-art technique for in-situ and nondestructive characterization of the fouling morphology, suitable for bridging the gap between biofouling morphology and operational performance.
In the second chapter, an automated algorithm was developed to visualize and quantify biofouling from 3D OCT datasets of spacer-filled channels. By integrating OCT images with computed tomography (CT) images of a reference feed spacer, sharp visualization, precise localization, and automated analysis of large image datasets were enabled. 
In the third chapter, OCT was applied in membrane fouling simulators (MFS) to study the impact of biofouling on the feed channel pressure drop. The pressure drop mainly depended on the fouling around the spacer and the relative pressure drop increase was determined as a suitable biofouling indicator.
In the fourth chapter, OCT and the biofouling indicator were applied to study the impact of corrective cleaning in fouling studies in MFS with hydrophilic and biocidal spacer surface modifications. Modified spacers maintained a significant improvement in cleaning performance during several cleaning cycles.
Overall, this work highlights that the feed spacer can be and should be included in biofouling studies in spiral wound elements in order to develop effective mitigation strategies.

Theo holds a Bachelor of Science degree in Environmental Sciences from Wageningen University. In 2018, Theo completed his Master of Science in Environmental Engineering from ETH Zurich. During his Master's degree, he contributed to the development of sustainable membrane processes for wastewater and water treatment in collaboration with Eawag and the Nanyang Technological University.
Following his master's degree, Theo joined the King Abdullah University of Science and Technology (KAUST) as a Ph.D. candidate in Environmental Science and Engineering with Prof. Vrouwenvelder. His research efforts focus on addressing biofouling on the membrane and feed spacer in spiral wound elements for reverse osmosis and nanofiltration. 
During his time at KAUST, he received the Dean’s Award for outstanding academic achievements in 2021/2022 in the Biological and Environmental Science and Engineering Division. Theo has actively participated in events organized by the Water Desalination and Reuse Center (WDRC), including World Water Day, KAUST Research Open Week, and the UN2023 Gamechanger Challenge.


Kees Theo Huisman