24 March, 2019
A sequence of events that allows the successful resolution of Holliday junctions at the single-molecule level has been revealed by Samir Hamdan and colleagues at KAUST. The ability to observe the events in real time has enabled the team to learn more about this important mechanism.
Holliday junctions are cross-shaped DNA structures that form when two double-stranded DNA molecules separate into four strands to exchange segments of genetic information. This exchange is essential for correcting errors in DNA introduced during mitotic or meiotic cell division as well as errors caused by environmental mutagens, such as ionizing radiation.
“Holliday junctions are central intermediates in processes rectifying any damage that may affect the integrity and transfer of genetic material to the offspring,” say Mohamed Sobhy and Amer Bralić, the first authors of the study.
Image: 3D-printed plausible model of the GEN1 monomer generated by the KAUST Visual Computing Center.
© 2018 Hadi Amata, Moetaz Abbas and Rahman Hasan